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The dielectric relaxation of water molecules in polymer—water mixtures is discussed. The memory
function approach and scaling relationships are used as a basis for the model of symmetric dielectric
spectrum broadening. The correspondence between the relaxation time, the geometrical properties,
the self-diffusion coefficient, and the Cole—Cole exponent is established. The relationship between
the hydrophilic and hydrophobic properties of the polymers and the dielectric relaxation parameters
is discussed. €2002 American Institute of Physic§DOI: 10.1063/1.1471551

I. INTRODUCTION ation process of water in the water mixture of a random-
. - . —20
An extensive study of water and its interaction with the coiled polymer shows a symmetric relaxation cutYe’The

interface has attracted much attention recently. Substantiggla@xation time and width of the dielectric spectrum in-
progress has been made in unraveling the inherent complex§€ases with increasing polymer concentration. In the
ties of water—substrate interactions, with most of the attenpolymer—water mixture, the polymer chain is too large to
tion focused on water in biopolymers, synthetic polymersmove cooperatively with water molecules. The polymer
and amphiphilic systemslt is now well known that the chain behaves as a geometric constraint for rotational motion
physical properties of water molecules near surfdbeshey  of water molecules and their movement is strongly hindered
inorganic or organic, as in surfactant-based systeuifier by the polymer chain. The variations of conformations of
measurably from those of bulk water molecules. This obserrandom-coiled polymer induce variation in the local structure
vation underlies the distinction between “bound” and “free” of water, which yields the symmetric relaxation cutve®*®
water. The principal dielectric relaxation peak of water ex- | order to discuss the relationship between the polymer
hibits the Debye-type relaxation cuféin spite of the com-  gictyre and the dynamical feature of the water in the

plexities of hydrogen-bonding liquids on the molecular level. olymer—water mixture, dielectric relaxations of water for

The relaxation curve of water has been considered to be due, .o ¢ polymer—water mixtures were obserfdl

to the hydrogen-bonding network structure constructed bthe relaxation curves show the symmetric relaxation de-

water molecules behaving as large clusferS.The relax- ibed by the Cole—Col 2h Th ical
ation of the large clusters occurs via the Brownian diffusionScrPed by the Cole-Cole equation.The symmetrica

process, i.e., this process requires many individual steps d¥foadening of the dielectric spectrum was phenomenologi-
molecular reorientation. Furthermore, water shows anothef@lly interpreted by the variation of the local structure of
relaxation process at a frequency of about one order of mag/yater.18 Plots of the relaxation times against the parameters
nitude higher than that of the principal relaxafiohfre-  for the symmetrical broadening of the relaxation curve can
quency. This relaxation process was thought to be caused e classified into two groups of polymer structures: hydro-
the flipping motion of free OH groups between two acceptomphobic polymers and hydrophilic ones. The hydrophobic
sites and/or the breaking and reforming of a given hydrogempolymer group contained nonelectrolyte polymers and the
bond in a translational motigh:** hydrophilic polymer group mainly contained electrolyte
For water in mixtures of organic materials, the shape ofpolymers. The relaxation curve for the latter group is broader
the relaxation curve of the water depends on the mO|eCU|%an that of the former, when Compared at the same relax-
size of the solute?™*° The primary dielectric relaxation of ation time. This result was interpreted to indicate that the
water in mixtures with small organic compounds exhibits aater structure in the mixtures of the hydrophobic polymer
broad and asymmetric relaxation curVe:' This relaxation g yniform and stable than that in the mixtures of the hy-
behavior canl be lntelrprelgagdlsfrom;he c;]oopheratlvehmot:on OEirophilic polymers. In this paper, we will present the model
water and solute molecules:On the other hand, the relax- that explains the experimental observation mentioned
above® and which establishes that the relationship between
a)Per_manent address: Institute for Mechanics and Engineering of Kazan Sq’he relaxation time, the geometrical properties, the self-
entific Center of RAS, Lobochevsky st. 2/31, P.O. Box 559, 420111, ,. . -
Kazan. Russia. diffusion coefficient, and the Cole—Cole exponent of the wa-
DElectronic mail: yurif@vms.huji.ac.il ter relaxation peaks in polymer—water mixtures.
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Il. EXPERIMENTAL PROCEDURE M(z)=z'"27" <, (4)

The polymers investigated in this work were poly ~ The mathematical implication is that(z) in (4) is a multi-
nylpyrrolidong (PVP; average molecular weight Mw sheet functio?f of complex variablez. In order to represent
=10000, poly(ethylene glycol (PEG; Mw=8000, poly-  this function in time domain one should select the schlicht
(ethylene iming¢ (PEI; Mw=500000, poly(acrylic acid  domain using supplementary reasons. These computational
(PAA; Mw=5000, poly(vinyl methyl ethey (PVME; Mw  constraints can be avoided by using Riemann—Liouville frac-
=90000, poly(allylaming (PAIA; Mw =10000, and poly-  tional differential operatoi**°By defining the fractional dif-
(vinyI alcohol) (PVA; Mw= 77 000. Water used in this ex- ferentiation operator ODél*a, we have ODg-fa[f(t)]
periment was distilled and deionized by milli-QMILLI- =717 %F(2)—C, whereC=,D; °[f(t)]|= . is a constant
PORE Co., LtCD Water mixtures of these pOIymerS were which is dependent on the initial Cond|t|0|aD;V[g(t)]
prepared in the concentration range from 10 wt % to 20-85-[T' ()] Yf5(t—t")*"*g(t')dt’ is the Riemann—Liouville
wt% of polymer. Dielectric measurements of the polymer—fractional integration operator (Qv<1), oDg(t)]
water mixtures were performed in a frequency range from= (d/dtypy *[g(t)] is the Riemann—Liouville fractional
300 MHz to 10 GHz at 25 °C, employing the method of time gerivation operator (& y<1), “:=" denotes the Laplace

domain reflectometryTDR). The sample preparatioliand  transformation, and'(1) is the gamma function. Thus, Eq.
the procedures for the dielectric measurerfiefithave al-  (3) with the memory function4) in time domain can be

ready been reported. rewritten as follows:
df(t) —a l1-a
Il. THE MODEL at T oD; “[f(t)]+C. (5)

The complex dielectric permittivitg* (w) for the Cole—  Note that the constar can be easily obtained from this
Cole process is represented in the frequency domain as  equation. In fact, the relationship between the complex sus-
P ceptibility and the correlation function, together with Eij)
ot T (wn® (1) and (5)_, leads (_jlrectly to the requirement that=0.

or This equation was already discus¥ed”*%as a phenom-
where w is the cyclic frequencyi is the imaginary unit, 0 enological representation of the dynamic equation for the
<a=1 is the phenomenological so-called Cole—Cole expo-Cole—Cole law. The convolution of fractional deferential op-
nent,e., is the high-frequency limit of the complex dielectric erator in Eq.(5) shows that this equation can be regarded as
permittivity e*(w), e is the static dielectric permittivity, consequence of the memory effect. A comprehensive discus-
and 7 is the relaxation timé! The specific case of Eq1) sion of the memory function4) properties was already
with =1 is correspondent to Debye’s relaxation, while 0 presented*~2®Accordingly, Eq.(5) holds for some coopera-
<a<1 represents the symmetric broadening of the relaxtive domain and describes the relaxation of an ensemble of
ation peak. microscopic units. Each unit has its own microscopic

One of several arguments that can explain the nonmemory functionmg(t), which describes the interaction be-
Debye relaxation is the memory efféét:31In this case, the tween this unit and the surroundingisteraction with the
normalized dipole correlation functidi{t) corresponding to statistical reservojr The main idea of such an interaction
a nonexponential dielectric relaxation process obeys theuggest& =2 that my(t)~3;5(t;—t) [see Fig. 1a)]. It re-

e*(imw)=¢

equation flects the interrupted interaction between the relaxing unit
and its neighbors. The time momeintgthe time position of
df(t) t : } .
= _f m(t—t')f(t")dt’, (2)  the delta functionsare the moments of the interactigre-
dt 0 laxation acts The work$*~%imply that the sequence of

wherem(t) is the memory function antis the time variable. constructs a fractal sgthe Cantor set for examplevith a

In the case of dielectric relaxatioh(t) can be considered as fractal dimension &d¢=<1. This statement is related to the

a dipole correlation function. The specific form of the idea that cooperative behavior provides some ordering and
memory function is dependent on the characteristics of interlong-lasting scaling of relaxation process. Following these
action between the relaxing system and the statistica®SSumptions, the memory function(t) for a cooperative

reservoir®3L domain can be obtained as a result of averaging over the
In the frequency domain, after a Laplace transfrg.  ensemble of(t) [see Fig. 1b), where for more convenient
(2) reads as representatiom(t)=f{,m(t’)dt’ is plotted instead ofm(t)].
The requirements of measure conserv&fidfin the interval
zF(2)-1=-M(2)F(2), (3 [0, 1/] and conservation of the fractal dimensidpfor all

where z is the Laplace parameteF(z) and M(z) are  Ms(t) give this averaging as

Laplace images of (t) andm(t). Thus, after some simple 2

algebra combining1) with (3) and taking into account the m(t)zf m(s(é’_ut)é’_u(l_df)du’

relationship between the complex permittivity and the corre- -1z

lation function® [&*(2)—¢..]/(es—&.)=1—2zF(z), one

can obtain the Laplace image of the memory function for the

Cole—Caole process as follows: M (z)~z* 9. (6)
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behavior. Hence, in this work we will assume that the
memory function(6) has its origin in the geometrical self-

a
I similarity of the polymer network. Thus, the scaling param-
eter N actually is the number of points where the relaxing
units are interacting with the statistical reservie., by the
ergodic assumption—the number of relaxation acts on a mi-
b 2

ms(f)

croscopic level for a cooperative domgifihe assumption of
geometrical self-similarity of the considered system suggests
that this number is

= 1 3
= R\ %
4 = _
N G(RO) | ©
p wheredg is a spatial fractal dimension of the point set where
me

relaxing units are interacting with the surroundinBss the

FIG. 1. (8) Schematic picture ahg(t) dependencyt; are the time moments Sizé .Of a gample VO'L?me section \.Nhere movement. of one
of the interaction in time that construct a fractal Cantor set with the dimenJ€laxing unit occursR is the cutoff size of the scaling in the
siond;=1In 2/In 3=0.63.(b) Schematic representation that illustrates the av- Space or the size of the cooperative dom@iris a geometri-
eraging of m(t) over an ensemble of microscopic units. Heiét) cal coefficient about unity, which depends on the shape of
=/im(t’)dt’. Curve 1 corresponds to the cooperative ensemble ofasinglqhe system heterogeneity. For instance, the well-known two-

microscopic unit witht; distributed by the Cantor set. Curve 2 represents the imensional r rsive fractal Sierpinski Fﬁ h d
ensemble of 3 units of the same type. Curve 3—ten units. The curve g ensional recursive Iracta erpinski- carpenas dg

corresponds to the 1000 units in ensemble. The last one displays the power= IN(8)/IN(3)~=1.89, G=v3/4~0.43.
law behaviorl (t)~t" 23, In general, the dielectric relaxation can be regarded as
rotation of macroscopic dielectric polarization vector of

some representative sample volume. It is clear that this rota-

These requirements are direct consequences of the idea thagn is provided by some microscopic motions including mo-
all microscopic units are equivalent. In general, not only théyjjity and transport of individual charge carriers. In the sim-
fractal _structure of events,_but other physical reasons CaPlest case, these microscopic processes can be related to
determine the power-law time dependence of the macroygiation of independent microscopic dipoles. In general,
scopic memory functiori6). For example, the mod€lde-  however, such an idea does not explain correctly the mecha-
scribes the scaling of dynamic coefficient®iicroelastic  nism of dielectric relaxation. For example, hopping transport
stiffens and viscositythat leads to the power-law asymptotic of charge carriers, dielectric relaxation in polymers or in as-
frequency dependency of complex modulus in polymers.  gqciated liquids cannot be reduced to the problem of inde-

According to the averaging procedu(® the memory pendent microscopic dipole rotation.
function(4) is a cooperative one and the Cole—Cole behavior  The main goal of this research is the study of water

appears on the macroscopic level after averaging over thgjaxation in polymer—water mixture. The dispersion of bulk
ensemble of microscopic dipole active units. Compaf#ig  \yater is observed in microwave frequency raifgé~2
and(6), one can establish that=d; . This result once again . 1010 Hz) that is much higher than the relaxation of macro-
highlights the fact that in this model the fractal properties onmgjecules in aqueous solution E:010* Hz) by itself. For
a microscopic level can induce the power-law behavior ofaxample, the relaxation of local part of macromolecule ob-
memory functions(4) and Cole—Cole permittivity1) on &  seryed in the frequency range between 100 kHz—100 MHz

macroscopic _Ievgfls. _ S for the water mixtures of PVP and PVME. Therefore, in
By definition,™ the fractal dimension is given by our case we assume that the polymer chains are immobile in
In(N) the frequency interval studied.
fTa= (&) (7) The water molecules interact with each other through the

hydrogen bonds network. For this reason dielectric relax-
Here, the scaling parametéris the dimensionless time in- ation of bulk water is cooperative and cannot be derived
terval size andN is the number of delta functiorselaxation  from independent microscopic dipoles concept. In this re-
actg in the interval. However, a characteristic time constantgard, the tetrahedral displacement m8%ef water molecule
of the Cole—Cole process is the relaxation timélhereby,  dynamics should be mentioned. The model takes into ac-
the scaling parametef and the relaxation time should be count the relaxation of macroscopic dipole moment provided

proportional to each other by reorientation of water molecules and their diffusion si-
r multaneously, considering only the collective behavior of
&= —, (80  water molecules. In our model we will discuss the single

7o

water molecule behavior and imply that each reorientation of
where the constant minimat, is the cutoff time of the scal- a water molecule is accompanied by its jump to the other
ing in time. position. In other words, the relaxation of a water molecule

There is a computer simulation prédthat an anoma- is accompanied by an act of diffusion. Thereby, the macro-
lous relaxation on a fractal structure exhibits a Cole—Colescopic relaxation time is the time during which the relaxing
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Figure 2 also shows that for all samples the experimental
) curves rise up tav=1 at 7~8 ps. This point corresponds to

¢ - Fva 0% of polymer in water and to the relaxation of bulk water.
A - PAIA Increasing the polymer concentration leads to the increase of
1! o - pan the relaxation time and to the decrease of the Cole—Cole
exponent. At the same time, the change of the Cole—Cole
M exponent is an integral effect. When discussing the interac-
o - PEG tion between the relaxation units and the statistical reservoir,
11 4 - pvme we are assuming that this interaction includes within itself
o e the interactions of the water molecules with each other in the
cooperative domain, the confinement and caging of the water
0.7 : : : : molecules by the polymer chains, as well as other types of
-11.0 -10.8 -106 -10.4 interactions. Caging and confinement in particular depend on
Log(z[s]) the local structure, and for this reason the scaling properties

o ] become central in the consideration.
FIG. 2. Cole—Cole exponet vs relaxation timer. The curves are fitted to In the framework of th r nted modRis the size of
Eqg. (11). The full symbols correspond to the mixtures of hydrophilic poly- € framework of the presente 0GelS the size o

mers and water while the open symbols correspond to the mixtures of hythe water molecules’ cooperative region affected by the poly-
drophobic polymers and water. mer chains. The structure of the water molecules in this dy-
namic cooperative domain is different from the cooperative
structure of the bulk water. The size of this cooperative re-
microscopic unit would move some distand® The gion grows with the increase of the polymer concentration.
Einstein—Smoluchowski thed*?gives the relationship be- The increase of the polymer concentration results in the
tweenr andR as follows: growth of the cooperative area siie which consequently
R?=2d:D.r, (10) !e_ads_ to t_he increase of the relaxation timt_él’he cooperat-
ivity implies a long-range space correlation; therefore, at
whereDys is the self-diffusion coefficient, andg is the Eu-  nonzero polymer concentrations all the water moleciiégs
clidean dimension. Thus, by substitution(8f, (9), and(10)  |east all of the water molecules which contribute to the dis-
into (7), one can get the relationship between the Cole—Col@yssed relaxation procesare within the cooperative region,

parameterr and the relaxation time in the form whose structure is different from the structure of bulk water.
de In(7wy) It is well knowr? that the macroscopic dielectric relax-
a= (11)  ation time of the bulk wate(8.27 ps at 25 °Tis about ten

2 In(rl )’ . . . S .

times greater than the microscopic relaxation time of a single
wherews=2dEG2’dGD5/RS is the characteristic frequency of water molecule, which is about one hydrogen bond
the self-diffusion process. lifetime*~7 (~0.7 p9. This fact follows from the associative
structure of bulk water, where the macroscopic relaxation
time reflects the cooperative relaxation process related to the
IV RESULTS AND DISCUSSION space scale of the cooperative region.

The experimental dependencies of the Cole—Cole- As mentioned above, the water in the polymer—water
exponenta versus relaxation timer, together with fitting — mixture is organized into specific cooperative structures that
curves according to Eql1) with three fitting parameters are different from that of the bulk water. This microscopic
dg, 7o, andw for all the samples, are plotted in Fig. 2. As relaxation of water molecules in that pattern depends on the
mentioned above, Fig. 2 shows a remarkable separation efynamic properties of the cooperativity and rate of interac-
the experimental curves into two groups. The hydrophiliction with a polymer matrix. Different polymers perturb the
polymer solutions PVA, PAIA, PAA, and PEI are distributed bulk water structure in different ways and activate specific
in one group while the hydrophobic polymer water mixturescooperative water domains with different microscopic relax-
PEG, PVME, and PVP are in another. Note that the curves odtion times.
the hydrophobic group are above those of the hydrophilic  In the framework of our model the microscopic relax-
group. ation time of the water molecule is equal to the cutoff time of

According to the presented model the Cole—Cole expothe scaling in time domairry. For the most hydrophilic
nent reflects the interaction between the relaxing units angolymer PVA, the strong interaction between the polymer
the statistical reservoir. The biggest deviation of the Cole-and the water molecule results in the greatest value of mi-
Cole exponent from unity corresponds to the strongest intereroscopic relaxation time, which is only 10% less than
action. We can consider that in our case the relaxing units aréne macroscopic relaxation time of the bulk watege Table
the water molecules, while the statistical reservoir is thd). Weakening of the hydrophilic propertider intensifica-
polymer macromolecule. The deviatienfrom unity for the  tion of the hydrophobic propertigsesults in a decrease of
hydrophilic group(see Fig. 2 is greater than that of the interaction between the water and the polymer and conse-
hydrophobic one. This indicates that the water—polymer inquently in a decrease of,. The aqueous solution of the
teraction is more significant for the hydrophilic samples andmost hydrophobic polymer PVP has the smallest value of a
thus confirms the concept presented here. single water molecule microscopic relaxation time, which is
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TABLE I. Values of the space fractional dimensidg, the cutoff time of The self-diffusion coefficient for the bulk waférat
scaling in the time domairry, the characteristic frequency and the 25°C is 2.5 1072 m2s L. The presence of a polymer in
estimated self-diffusion coefficient for the sample. ’ ’ .

the water prevents the bulk water structure formation and

Sample ds 7o [ps]  w¢X10 M [Hz] D¢x10° [m?s7Y] promotes the diffusion. However, the strong interaction be-
BVA 156:009 718074 147021 231 tweep pqumer and water for hydrophilic samples inhibits
PAJAA 143 6.46 174 3.02 the diffusion. From Table | we can see the clear tendency of
PAA 1.12+0.17 6.34-0.83  2.08-0.68 4.68 the diffusion coefficient to increase with a decrease of hydro-
PEI 1.33-0.02 4.8%-045  2.670.40 6.01 philicity. For the most hydrophilic sample PVA the estimated
PEG 1542004 445074  2.78-0.63 6.26 self-diffusion coefficient is only 30% greater than for the
PVME  1.38:0.10 3.58:1.23  4.24:2.47 9.54

bulk water, while for the PVP sample it is about two orders
of magnitude highe(see Table)l

% or the sample PAIA there are only three experimental points. For this
reason it is impossible to determine the mean square deviation value and
consequently the confidence intervals for the fitting parameters.
duenty 9P V. CONCLUSION

PVP 1.06:0.01 0.79:0.11 12734 286

. . L The main dielectric relaxation peak for bulk water is due
almost equal to the microscopic relaxation time of bulk water : .
to the cooperative relaxation on the scale of the water mol-

(see Table L ecule cluster. Thus, the presence of macromolecules in aque-
The interaction between the water and the polymer mabus solutioné char; es 'E)he water structure and water—wlter
trix actually occurs in the vicinity of the polymer chains, and . 9

T interactions. The changes depend on the concentration of the
only the water molecules located in this interface are affecte . . .
. . . o . Impurities as well as on the features of interaction between
by the interaction. The space fractal dimensiw in this

case is the dimension of the interface. This quantity is not atlhe water and the macromolecules. . . .
The model was elaborated to establish the relationship

direct measure of the polymer chain structure but corre; . , . .
o . between the relaxation time, the geometrical properties
sponds to some specific length scale pertinent to the rela

ation process. The generally acknowledged mddeksint to )i'space fractal dimensiodg), the self-diffusion coefficienF,
large-scale dimensions of the polymer chains, eithgin2 and the Cole—Cole exponent. It was shown that the micro-

ideal case of a concentrated solutian 5/3 (in a dilute so- scopic relaxation time of water molecules in the vicinity of

lution in a good solvent Nevertheless, one could recognize f[he polymer matrix correlates with the hydrophilicity of the

that the fitted values ag, presented in Table |, fall into the impurities. At the same time, it was observed that the in-

interval 1<dg<2 and are in good agreement with the valuestrease of hydrophobicity of the impurities increases the dif-

. . . fusion of the water molecules in the cooperative domains
mentioned above. In this regard one could consider the value

of dg as a measure of polymer structure at the intermediat@ €’ the polymer chains.

scale. Remarkably, according to the data obtained by fitting,
the weakening of the hydrophilic property leads to a decrease
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